

Inhalt

1.	Allgemeine Informationen	2
2.	Chemische Zusammensetzung	2
3.	Physikalische Eigenschaften	2
3.1	Dichte	2
3.2	Solidus- und Liquidustemperatur	2
3.3	Längenausdehnungskoeffizient	2
3.4	Spezifische Wärmekapazität	2
3.5	Wärmeleitfähigkeit	
3.6	Spezifische elektrische Leitfähigkeit	2
3.7	Spezifischer elektrischer Widerstand	2
3.8	Temperaturkoeffizient des elektr. Widerstands	2
3.9	Elastizitätsmodul	
3.10	Spezifische magnetische Suszeptibilität	
3.11	Kristallstruktur / Gefüge	3
4.	Mechanische Eigenschaften	3
4.1	Festigkeit bei Raumtemperatur	
4.1.1	Bänder und Bleche	3
4.1.2	Federbänder	4
4.1.3	Rohre	4
4.1.4	Stangen	5
4.1.5	Profile und Rechteckstangen	5
4.1.6	Drähte	
4.1.7	Strangpressprofile	6
4.1.8	Schmiedestücke	
4.2	Tieftemperaturverhalten	
4.2.1	Festigkeitseigenschaften	7
4.2.2	Kerbschlagzähigkeit	7
4.3	Hochtemperaturverhalten	
4.3.1	Warmfestigkeit	7
4.3.2	Zeitstandwerte	
4.3.3	Kerbschlagzähigkeit	
4.4	Dauerschwingfestigkeit	
4.4.1	Bänder und Bleche	
4.4.2	Stangen	
4.5	Federeigenschaften	
4.5.1	Federbiegegrenze	8
4.5.2	Biegeverhalten	8
5.	Normen	
5.1	Bänder und Bleche	9
5.2	Rohre	
5.3	Stangen	9
5.4	Drähte	9

6.	Werkstoffbezeichnungen	9
7.	Bearbeitbarkeit	
7.1	Umformen und Glühen	9
7.2	Spanbarkeit	10
7.3	Verbindungstechniken	10
7.4	Oberflächenbehandlung	10
8.	Korrosionsbeständigkeit	10
9.	Anwendungen	10
10.	Liefernachweis	11
11.	Literatur	11
12.	Index	11

Hinweis:

Durch Klicken auf die Überschriften können Sie direkt zu den entsprechenden Inhalten springen.

1. Allgemeine Informationen

Werkstoff-Bezeichnung:

CuSn8

Werkstoff-Nr.:

CW453K (ehem.: 2.1030)

CuSn8 weist eine bessere Korrosionsbeständigkeit als die Zinnbronzen mit niedrigen Zinngehalten, höhere Festigkeit und gute Gleiteigenschaften auf. Sie ist verschleißfest, hat eine gute Kaltumformbarkeit sowie sehr gute Federeigenschaften und lässt sich gut löten.

CuSn8 wird bei erhöhten Festigkeits- und Verschleißanforderungen für federnde Bauelemente [1] und für hochbeanspruchte Teile in der Papier-, Zellstoff-, Textil- und chemischen Industrie sowie im Schiff-, Maschinen- und Apparatebau eingesetzt. Ein weiteres Hauptanwendungsgebiet sind Gleitelemente wie Gleitlager (dünnwandige Lagerbuchsen) und Gleitführungen.

2. Chemische Zusammensetzung - nach EN -

Legierungsbestandteile				
Massenanteil in %				
Cu Sn P				
Rest	7,5 bis 8,5	0,01 bis 0,4		

Sonstige Beimengungen bis				
Ni	Zn	Fe	Pb	Sonstige zusammen
0,2	0,2	0,1	0,02	0,2

3. Physikalische Eigenschaften

3.1 Dichte

Temperatur	Dichte
°C	g / cm³
20	8,79

3.2 Solidus- und Liquidustemperatur

Solidustemperatur	Liquidustemperatur
°C	°C
860	1040

3.3 Längenausdehnungskoeffizient

Temperatur	Längenausdehnungs- koeffizient
°C	10 ⁻⁶ ⋅ K ⁻¹
von 20 bis 100	18,0
von 20 bis 300	18,2
von 20 bis 400	18,7
von 20 bis 650	22,2
von 20 bis 800	21,8

3.4 Spezifische Wärmekapazität

Temperatur	Spezifische Wärmekapazität
°C	J / (g ⋅ K)
20	0,377

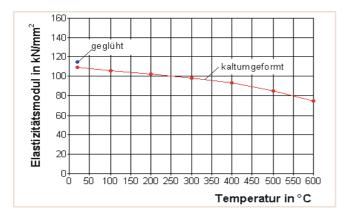
3.5 Wärmeleitfähigkeit

Temperatur	Wärmeleitfähigkeit
°C	W / (m · K)
20	67
200	81

3.6 Spezifische elektrische Leitfähigkeit

Temperatur	Spez. elektr. Leitfähigkeit
°C	m / (Ω · mm²)
20	7,5
200	6,5

3.7 Spezifischer elektrischer Widerstand


Temperatur	Spez. elektr. Widerstand
°C	(Ω·mm²) / m
20	0,133
200	0,154

3.8 Temperaturkoeffizient des elektr. Widerstands

Temperatur	Temperaturkoeffizient des elektr. Widerstands
°C	K ⁻¹
20	0,00065
(gültig von 0 bis 100 °C)	

3.9 Elastizitätsmodul

Temperatur	Elastizitätsmodul	Zustand
°C	kN / mm ²	
20	109	
100	106	
200	102	
300	98	kaltumgeformt
400	93	
500	85	
600	75	
20	115	geglüht

3.10 Spezifische magnetische Suszeptibilität - bei 20 °C -

CuSn8 ist diamagnetisch, solange kein Eisen in ausgeschiedener Form vorhanden ist. Die Suszeptibilität liegt bei -0,1 · 10⁻⁶. Nach EN ist ein Eisengehalt von max. 0,1% zulässig. Die Suszeptibilität beträgt bei 0,09% Fe 7 · 10⁻⁶.

3.11 Kristallstruktur / Gefüge

CuSn8 weist abhängig von dem Herstellungsvorgang einen einheitlichen α -Mischkristall oder ein mehr oder weniger heterogenes Gefüge aus einer α -Phase und einem (α + δ)-Eutektoid auf, wobei die α -Phase, eine homogene Lösung von Zinn in Kupfer in festem Zustand, in einem kubischflächenzentrierten Gitter kristallisiert und die $\delta\text{-Phase}$ (Cu₃₁Sn₈) eine kubische Struktur besitzt.

4. Mechanische Eigenschaften

4.1 Festigkeit bei Raumtemperatur

4.1.1 Bänder und Bleche - nach EN 1652 -

Zustand	Dio	cke	Zugfes	stigkeit	Dehngrenze	Bruchde	ehnung	Hä	irte
	(Nenr	nmaß)				für Di	icken		
						bis 2,5mm	>2,5mm		
				₹ _m	R _{p0,2}	A _{50mm}	Α	HV	
	m	m	N /	mm²	N / mm ²	%	%		
	von	bis	min.	max.		min.	min.	min.	max.
R370	0,1	5	370	450	(max. 300)	50	50	-	-
H090	0,1	5	-	-	-	-	-	90	120
R450	0,1	5	450	550	(min. 280)	20	23	-	-
H135	0,1	5	-	-	-	-	-	135	175
R540	0,1	5	540	630	(min. 460)	13	15	-	-
H170	0,1	5	-	-	-	-	-	170	200
R600	0,1	2	600	690	(min. 530)	5	7	-	-
H190	0,1	2	-	-	-	-	-	190	220
R660	0,1	2	660	750	(min. 620)	3	-	-	-
H210	0,1	2	-	-	-	-	-	210	240
R740	0,1	2	740	-	(min. 700)	-	-	-	-
H230	0,1	2	-	-	-	-	-	230	-

4.1.2 Federbänder - nach EN 1654 -

Zustand	Zugfes	tigkeit	Dehng	renze	Bruchde	ehnung	Hä	rte
	R	l _m	Rpt),2	A ₅₀	mm	Н	IV
	N / 1	mm²	N / n	nm²	% für Dicken von 0,1 bis 0,25 mm	% für Dicken über 0,25 bis 1,0 mm		
	min.	max.	min.	max.	min.	min.	min.	max.
R450	450	550	-	-	20	23	-	-
H135	-	-	-	-	-	-	135	175
Y370	-	-	360	(460)	17	20	-	-
R540	540	630	-	-	13	15	-	-
H170	-	-	-	-	-	-	170	200
Y470	-	-	470	(560)	10	15	-	-
R600	600	690	-	-	5	7	-	-
H190	-	-	-	-	-	-	190	220
Y540	-	-	540	(630)	5	7	-	-
B410	-	-	-	-	-	-	(190)	(220)
R660	660	750	-	-	3	4	-	-
H210	-	-	-	-	-	-	210	240
Y620	-	-	620	(710)	3	4	-	-
R740	740	-	-	-	-	-	-	-
H230	-	-	-	-	-	-	230	-
Y700	-	700	-	-	-	-	-	-

Anmerkung: Die Zahlen in Klammern sind keine Anforderungen dieser Norm, sondern sie sind nur zur Information angegeben.

4.1.3 Rohre - nach EN 12449 -

Zustand	Wanddicke	Zug- festigkeit	0,2%-De	0,2%-Dehngrenze		Härte			
	t	R _m	R	0,2	Α	H	IV	НВ	
	mm	N / mm ²	N / I	mm²	%				
	max.	min.	min.	max.	min.	min.	max.	min.	max.
М	20	-	-	-	-	-	-	-	-
R380	10	380	-	290	55	-	-	-	-
H080	10	-	-	-	-	80	110	75	105
R450	5	450	250	-	25	-	-	-	-
H115	5	-	-	-	-	115	160	110	155
R520	3	520	440	-	10	-	-	-	-
H155	3	-	-	-	-	155	190	150	185
R590	2	590	520	-	5	-	-	-	-
H180	2	-	-	-	-	180	-	175	-

4.1.4 Stangen - nach EN 12163 -

Zustand		nesser, elweite	Zug- festigkeit	Dehn- grenze	Br	uchdehnun	g ¹⁾		Hä	irte	
	(Nenr	nmaß)	R _m	R _{p0,2}	A ₁₀₀	A _{11,3}	Α	н	IB	H	IV
	m	ım	N / mm ²	N / mm ²	%	%	%				
	von	bis	min.	ungefähr	min.	min.	min.	min.	max.	min.	max.
М	2	80					wie gefertigt				
R390	2	60	390	(260)	35	40	45	-	-	-	-
H090	2	60	-	-	-	-	-	90	120	95	125
R450	2	40	450	(280)	18	22	26	-	-	-	-
H125	2	40	-	-	-	-	-	125	160	130	165
R550	2	12	550	(430)	10	12	15	-	-	-	-
H160	2	12	-	-	-	-	-	160	190	170	200
R620	2	6	620	(550)	(4)	5	-	-	-	-	-
H185	2	6	-	-	-	-	-	185	-	195	-

¹⁾ Die Proben müssen EN 10002-1 entsprechen, außer dass eine Messlänge von 200 mm nicht zulässig ist. Anmerkung: Die Zahlen in Klammern sind keine Anforderungen dieser Norm, sondern sie sind nur zur Information angegeben.

4.1.5 Profile und Rechteckstangen - nach EN 12167 -

Zustand	Querschnittsmaß		Zug- festigkeit	Dehn- grenze	Bruch- dehnung	Hä	rte	
		(Nennmaß)		R _m	R _{p0,2}	Α	НВ	HV
	Profile	Rechtecksta	ingen, Dicke					
		m	ım	N / mm ²	N / mm ²	%		
	1)	von	bis	min.	ungefähr	ungefähr	min.	min.
M	alle Maße	alle	Maße		wie gefertigt			
R520	-	2	6	520	(410)	(10)	-	-
H155	-	2	6	-	-	-	155	165
R450	-	2	50	450	(250)	(30)	-	-
H125	-	2	50	-	-	-	125	130

¹⁾ Die mechanischen Eigenschaften der Profile sind von der Form und den Maßen des Profils abhängig und zwischen Käufer und Lieferant zu vereinbaren.

Anmerkung: Die Zahlen in Klammern sind keine Anforderungen dieser Norm, sondern sie sind nur zur Information angegeben.

CuSn8

4.1.6 Drähte - nach EN 12166 -

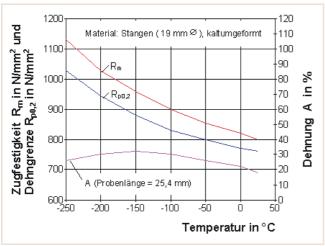
Zustand	Durchmesser ¹⁾	Zugfestigkeit	Dehn- grenze	Br	uchdehnung	3 ²⁾	Hä	rte	Frühere Zustands-
	(Nennmaß)	R _m	R _{p0,2}	A ₁₀₀	A _{11,3}	Α	Н	IV	bezeich- nung ³⁾
	mm	N / mm ²	N / mm ²	%	%	%			liulig
		min. max.	ungefähr	min.	min.	min.	min.	max.	
М	alle Maße				wie gefertigt				
R440	von 0,1 bis 0,5	440 550	(200)	(50)	-	-	-	-	
R420	über 0,5 bis 1,5	420 520	(190)	55	-	-	-	-	
R400	über 1,5 bis 4,0	400 490	(180)	55	-	-	-	-	weich
H090	von 1,5 bis 4,0		-	-	-	-	90	145	WEIGH
R390	über 4,0 bis 20,0	390 470	(170)	-	60	65	-	-	
H085	über 4,0 bis 20,0		-	-	-	-	85	140	
R530	von 0,1 bis 0,5	530 630	(350)	(14)	-	-	-	-	
R510	über 0,5 bis 1,5	510 610	(340)	(16)	-	-	-	-	
R490	über 1,5 bis 4,0	490 590	(320)	(24)	-	-	-	-	viertel-
H145	von 1,0 bis 4,0		-	-	-	-	145	190	hart
R460	über 4,0 bis 20,0	460 560	(310)	-	(28)	(33)	-	-	
H140	über 4,0 bis 20,0		-	-	-	-	140	180	
R630	von 0,1 bis 0,5	630 750	(480)	(6)	-	-	-	-	
R610	über 0,5 bis 1,5	610 720	(470)	(8)	-	-	-	-	
R590	über 1,5 bis 4,0	590 690	(440)	(10)	-	-	-	-	halb-hart
H180	von 1,5 bis 4,0		-	-	-	-	180	215	
R560	über 4,0 bis 8,0	560 660	(430)	-	(15)	-	-	-	
H175	über 4,0 bis 8,0		-	-	-	-	175	210	
R750	von 0,1 bis 0,5	750 880	(650)	-	-	-	-	-	
R720	über 0,5 bis 1,5	720 840	(620)	-	-	-	-	-	drei-
R690	über 1,5 bis 4,0	690 790	(590)	(6)	-	-	-	-	viertel-
H200	von 1,5 bis 4,0		-	-	-	-	200	240	hart
R650	über 4,0 bis 8,0	650 750	(560)	-	(8)	-	-	-	
H195	über 4,0 bis 8,0		-	-	-	-	195	235	
			/ \						
R870	von 0,1 bis 0,5	870 1000	(840)	-	-	-	-	-	
R840	über 0,5 bis 1,5	840 950	(810)	-	-	-	-	-	hart
R790	über 1,5 bis 4,0	790 900	(760)	-	-	-	-	-	
H230	von 1,5 bis 4,0		-	-	-	-	230	270	
			(
R1000	von 0,1 bis 0,5	1000 -	(1000)	-	-	-	-	-	
R950	über 0,5 bis 1,5	950 -	(930)	-	-	-	-	-	feder-
R900	über 1,5 bis 4,0	900 -	(900)	-	-	-	-	-	hart
H265	von 1,5 bis 4,0		-	-	-	-	265	-	

Anmerkung: Die Zahlen in Klammern sind keine Anforderungen dieser Norm, sondern sie sind nur zur Information angegeben.

4.1.7 Strangpressprofile

4.1.8 Schmiedestücke

Strangpressprofile aus CuSn8 sind nach EN nicht genormt.


Schmiedestücke aus CuSn8 sind nach EN nicht genormt.

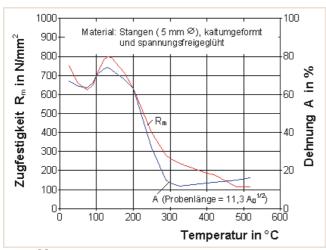
¹⁾ oder gleichgroße Querschnittsfläche für vierkantige Drähte. ²⁾ Der Zugvergleich muss nach EN 10002–1 an einer gleichachsigen Probe durchgeführt werden.

³⁾ nur zur Information.

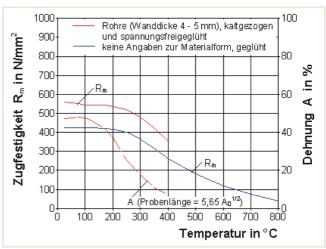
4.2 Tieftemperaturverhalten

4.2.1 Festigkeitseigenschaften

Quelle: [2]


4.2.2 Kerbschlagzähigkeit - Tieftemperatur -

Hierzu ist nur folgende Angabe vorhanden.


Kerbschlagzähigkeit bei 20 °C: 80 Nm/cm².

4.3 Hochtemperaturverhalten

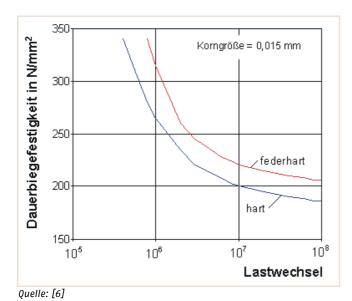
4.3.1 Warmfestigkeit

Quelle: [3]

Quelle: [3, 4]

4.3.2 Zeitstandwerte

Temperatur	Zeitstandfestigkeit R _{m/t}					
°C	N / mm²					
	10.000 h 100.000 h					
150	260	200				
200	210	130				


Quelle: [5]

4.3.3 Kerbschlagzähigkeit - Hochtemperatur -

Hierzu sind keine Angaben vorhanden.

4.4 Dauerschwingfestigkeit

4.4.1 Bänder und Bleche

4.4.2 Stangen

Zustand	Dauerschwingfestigkeit
(Stangendurchmesser 13 mm)	(10 ⁹ Lastwechsel)
	N / mm²
geglüht, Korngröße = 0,020 mm	221
geglüht, Korngröße = 0,070 mm	157
kaltgezogen, 15,2 %	201
kaltgezogen, 31,1 %	235
kaltgezogen, 50,1 %	201
Quelle: [3]	

4.5 Federeigenschaften

4.5.1 Federbiegegrenze - nach EN 1654 -

Zustand	Federbiegegrenze
	N / mm²
	min.
R450	-
H135	-
Y370	-
R540	-
H170	-
Y470	-
R600	-
H190	-
Y540	-
B410	410
R660	-
H210	-
Y620	-
R740	-
H230	-
Y700	-

4.5.2 Biegeverhalten -nach EN 1654 -

Zustand	Mino	destbiegeradi	Mindestbiegeradius für Biegekante				
	zur Walz	allel richtung icken	senkrecht zur Walzrichtung für Dicken				
	bis 0,25 mm	über 0,25 mm	bis 0,25 mm	über 0,25 mm			
R450	-	-	-	-			
H135	0 x t	0 x t	0 x t	0 x t			
Y370	-	-	-	-			
R540	-	-	-	-			
H170	0 x t	1 x t	0 x t	0 x t			
Y470	-	-	-	-			
R600	-	-	-	-			
H190	1 x t	2 x t	0 x t	1 x t			
Y540	-	-	-	-			
B410	1 x t	2 x t	0 x t	1 x t			
R660	-	-	-	-			
H210	2 x t	4 x t	1 x t	2 x t			
Y620	-	-	-	-			
R740	-	-	-	-			
H230	-	-	-	-			
Y700	-	_	-	-			

5. Normen

5.1 Bänder und Bleche

EN 1652 Kupfer und Kupferlegierungen -

> Platten, Bleche, Bänder, Streifen und Ronden zur allgemeinen Verwendung

EN 1654 Kupfer und Kupferlegierungen -

Bänder für Federn und Steckverbinder

EN 13148 Kupfer und Kupferlegierungen -

Feuerverzinnte Bänder

WI: 00133106 Kupfer und Kupferlegierungen -

Elektrolytisch verzinnte Bänder

5.2 Rohre

Kupfer und Kupferlegierungen -EN 12449

Nahtlose Rundrohre zur allgemeinen

Verwendung

5.3 Stangen

EN 12163 Kupfer und Kupferlegierungen -

Stangen zur allgemeinen Verwendung

EN 12167 Kupfer und Kupferlegierungen -

> Profile und Rechteckstangen zur allgemeinen Verwendung

5.4 Drähte

EN 12166 Kupfer und Kupferlegierungen -

Drähte zur allgemeinen Verwendung

6. Werkstoffbezeichnungen

Vergleich der Werkstoffbezeichnungen in verschiedenen Ländern (einschließlich ISO) *)

Land	Bezeichnung der Norm	Wewrkstoff- bezeichnung und/oder -nummer
Europa	EN	CuSn8 CW453K
USA	ASTM (UNS)	C52100
Japan	JIS	C5210, C5212
Internationale Normung	ISO	CuSn8

vormalige nationale Bezeichnungen			
Deutschland	DIN	CuSn8 2.1030	
Frankreich	NF	CuSn8P, CuSn9	
Großbritannien	BS	PB104	
Italien	UNI	CuSn8	
Schweden	SIS	CuSn8, 5431	
Schweiz	SN/VSM	CuSn8	
Spanien	UNE	CuSn8P C-7150	

^{*)} Die Toleranzbereiche der Zusammensetzung der in außereuropäischen Ländern genormten Legierungen sind nicht in allen Fällen gleich mit der Festlegung nach EN.

7. Bearbeitbarkeit

7.1 Umformen und Glühen

Umformen	
Kaltumformung Kaltumformgrad zwischen den Glühungen	gut max. 60 %
Warmumformung Temperaturbereich	begrenzt 700 bis 800 °C

Glühen			
Weichglühen, Ten	np-Bereich	450 bis 700 °C	
Entspannungsglüh	en, Temp-Bereich	200 bis 350 °C	

CuSn8 weist eine gute Kaltumformbarkeit auf. Sie ist für die spanlose Umformung durch Walzen, Ziehen, Bördeln, Biegen, Kanten und Tiefziehen geeignet.

7.2 Spanbarkeit

Zerspanbarkeitsindex: 20

(CuZn39Pb3 = 100)

(Die angegebenen Zahlen sind keine festen Messwerte, sondern stellen relative Einstufungen dar. Angaben anderer Quellen können daher geringfügig nach oben oder unten abweichen.)

Bei der groben Unterteilung der Kupferwerkstoffe hinsichtlich ihrer Spanbarkeit in drei Hauptgruppen wird CuSn8 der Gruppe III (mäßige bis schwere Spanbarkeit) zugeordnet. Für eine weitere Abstufung innerhalb dieser Gruppe ist der Festigkeitszustand maßgebend, so hat CuSn8 im Zustand R620 eine relativ bessere Spanbarkeit als im Zustand R390, allerdings ist dies mit einem erhöhten Werkzeugverschleiß verbunden. Die Spanform ist ungünstig, es treten je nach Spanungsparameter lange Bandspäne und sogenannte Aufbauschneiden auf [7].

Siehe auch DKI-Informationsdruck i.18 "Richtwerte für die spanende Bearbeitung von Kupfer und Kupferlegierungen".

7.3 Verbindungstechniken

Schweißen		
Gasschweißen	mittel	
Lichtbogenhandschweißen	mittel	
WIG-Schweißen	gut	
MIG-Schweißen	gut	
Widerstandsschweißen	gut	
Elektronenstrahlschweißen	gut	

Löten	
Weichlöten	sehr gut
Hartlöten	sehr gut

Kleben		
Kleben geeignet		

Spezielle Informationen sind beim DKI erhältlich.

7.4 Oberflächenbehandlung

Polieren		
mechanisch	gut	
elektrolytisch / chemisch	gut	
Galvanisierbarkeit		
sehr gut		

Eignung für Tauchverzinnung

sehr gut

8. Korrosionsbeständigkeit

CuSn8 besitzt eine gute Beständigkeit gegenüber Seewasser, verschiedene Agenzien und Industrieatmosphäre [8] und ist sehr gut anlaufbeständig.

Diese Legierung ist gegen Spannungsrisskorrosion als weitgehend unempfindlich einzustufen.

Ferner ist CuSn8 auch gegen lochfraßähnliche Angriffe weitgehend immun. Selbst bei Seewasserangriff überwiegt der allgemeine gleichmäßige Abtrag gegenüber einem örtlichen Angriff.

9. Anwendungen

- Steckverbinder, Steckerleisten
- Relaisfedern, stromleitende Federn für Schaltelemente
- Klemmanschlüsse, stromleitende Klemmen
- Sicherungsklemmen, Bunddrähte
- · Hochleistungsfedern, Membranen
- Apparateteile und Drahtgewebe für die Papier- und chemische Industrie, z.B. für Foudriniersiebe
- Drahtbürsten, perforierte Bänder, Pumpenteile
- Teile für Textielmaschinen
- hochbeanspruchte Schnecken, Zahnräder, Bolzen und
- · Gleitlager und Gleitbahnen
- Laufbuchsen, Getriebeteile
- Brückenauflagerplatten, Manometerfedern
- Bourdonrohre
- Kupplungsscheiben
- Keile, Schweißdrähte

10. Liefernachweis

Nachweise von Herstellern und Händlern für Halbzeuge aus CuSn8 können beim DKI angefordert werden.

11. Literatur

- [1] Bänder und Drähte aus Kupferwerkstoffen für Bauelemente der Elektrotechnik und der Elektronik (DKI-Informationsdruck i. 20). Deutsches Kupfer-Institut, Berlin/Düsseldorf.
- [2] McClintock, R. M., Vangundy, A. D. und Kropschot, R. H.: Low - temperature tensile properties of copper and four bronzes. ASTM Bulletin, September 1959, S. 47 - 50.
- [3] Copper Data Sheet No. G5, CuSn4, Deutsches Kupfer-Institut (1971).
- [4] Kupferwerkstoffe. Wieland Werke AG, Metallwerke Ulm (1986).
- [5] Weller, J., Weissgerber, R. und Kahling, G.: Kupferwerkstoffe für Wärmeübertrager und artverwandten Einsatz (Teil I und II). Chemie – Ingenieur – Technik, 23 (1971) 10 bzw. 11, S. 602 -606 bzw. 661 - 664.
- [6] France, W. D., Trout, D. E. und Mulholland, J. A.: Fatigue characteristics of five copper - base strip alloys commonly used for spring applications. Journal of Materials, 4 (1969) 3, S. 633 - 646.
- [7] Richtwerte für die spanende Bearbeitung von Kupfer und Kupferlegierungen (DKI-Informationsdruck i.18). Deutsches Kupfer-Institut, Berlin/Düsseldorf.
- [8] Kupfer Zinn Knetlegierungen (Zinnbronzen) (DKI -Informationsdruck i. 15). Deutsches Kupfer-Institut, Berlin/Düsseldorf.

12. Index

Allgemeine Informationen 2 Anwendungen 10 Biegeverhalten 8 Chemische Zusammensetzung 2 Dauerschwingfestigkeit Bänder und Bleche 8 Stangen 8 Dichte 2 Elastizitätsmodul 3 Elektronenstrahlschweißen 10

Entspannungsglühen 9 Federeigenschaften Biegeverhalten 8 Federbiegegrenze 8 Festigkeit Bänder und Bleche 3 bei tiefen Temperaturen 7 Drähte 6 Federbänder 4 Profile und Rechteckstangen 5 Rohre 4 Schmiedestücke 6 Stangen 5 Strangpressprofile 6 Galvanisierbarkeit 10 Gasschweißen 10 Gefüge 3 Hartlöten 10 Kaltumformung 9 Kerbschlagzähigkeit 7 Kleben 10 Korrosionsbeständigkeit 10 Kristallstruktur 3 Längenausdehnungskoeffizient 2 Lichtbogenhandschweißen 10 Liefernachweis 11 Liquidustemperatur 2 Literatur 11 Löten 10 MIG-Schweißen 10 Normen Bänder und Bleche 9 Drähte 9 Rohre 9 Stangen 9 Oberflächenbehandlung 10 Polieren 10 Schweißen 10 Solidustemperatur 2 Spanbarkeit 10 Spez. elektrische Leitfähigkeit 2 Spez. elektrischer Widerstand 2 Spez. magnetische Suszeptibilität 3 Spez. Wärmekapazität 2 Tauchverzinnung 10 Temperaturkoeffizient des elektr. Widerstands 2 Verzinnung 10 Wärmeleitfähigkeit 2 Warmfestigkeit 7 Warmumformung 9 Weichglühen 9 Weichlöten 10 Werkstoffbezeichnungen 9 Widerstandsschweißen 10 WIG-Schweißen 10

Zeitstandwerte 7