CuZn39Pb3

Alte Bezeichnung "Ms 58"

CuZn39Pb3 ist in Deutschland die Hauptlegierung für Zerspanung. Sie wird vorwiegend dort verwendet, wo es auf eine spanende oder spanabhebende Formgebung ankommt. CuZn39Pb3 ist insbesondere für die Bearbeitung auf Automaten geeignet. Sieläßt sich außerdem sehr gut warmumformen.

1. Zusammensetzung nach DIN 17 660*)

Massenanteil in %							
Cu	Zn	Pb	Fe	Ni	Sn	Al	Sonstige zusammen
57,0 b	is Rest	2,5 bis	bis	bis	bis	bis	bis
59,0		3,5	0,5	0,5	0,4	0,1	0,2

^{*)} Gültig sind jeweils die neuesten Ausgaben der Normen.

2. Physikalische Eigenschaften

2.1 Dichte bei 20 °C 8,47 kg/dm³

2.2 Solidus- und Liquidustemperatur 875 bzw. 890 °C

2.3 Längenausdehnungskoeffizient

von 25 bis 100 °C	19,3 · 10 ⁻⁶ K ⁻¹
von 20 bis 200 °C	21,0 · 10 ⁻⁶ K ⁻¹
von 20 bis 300 °C	21,4 · 10 ⁻⁶ K ⁻¹
von 20 bis 800 °C	24.7 · 10 ⁻⁶ K ⁻¹

2.4 Spez. Wärmekapazität

bei 20°C	0,377 J/(g · K)
von 100 bis 300 °C	0,398 J/(g · K)

2.5 Wärmeleitfähigkeit

bei - 200 °C	50 W/(m · K)
bei 20 °C	123 W/(m · K)

2.6 Elektrische Leitfähigkeit

bei 20°C	15 m/(Ω · mm ²)
bei 200 °C	12 m/(Ω · mm ²)

2.7 Elektrischer Widerstand

bei 20°C	0,066 Ω · mm ² /m
bei 200°C	0,083 Ω · mm ² /m

2.8 Temperaturkoeffizient des

elektrischen Widerstands bei 20 °C 0,0017 K⁻¹

2.9 Elastizitätsmodul bei 20°C

97 kN/mm²

2.10 Spez. magnetische Suszeptibilität bei 20 °C

CuZn39Pb3 ist diamagnetisch, solange kein Eisen in freier Form vorhanden ist. Die Suszeptibilität liegt bei $-0.173 \cdot 10^{-6}$, sie steigt bei 0.15% Fe auf $139 \cdot 10^{-6}$.

2.11 Kristallstruktur/Gefüge

CuZn39Pb3 weist ein heterogenes Gefüge aus $(\alpha+\beta)$ -Mischkristallen auf, wobei die α -Phase in einem kubisch-flächenzentrierten und die β -Phase in einem kubisch-raumzentrierten Gitter kristallisieren. Blei ist in dieser Legierung unlöslich und scheidet sich in fein verteilter Form meist an den Korngrenzen ab. Es wirkt kornfeinend auf das Gefüge und verbessert die Spanbarkeit.

3. Mechanische Eigenschaften

Bei CuZn39Pb3 lassen sich hohe Härte- und Festigkeitswerte nur durch Kaltumformung erreichen.

3.1 Festigkeitseigenschaften bei Raumtemperatur

3.1.1 Bänder und Bleche

aus CuZn39Pb3 sind in DIN nicht genormt.

3.1.2 Rohre nach DIN 17 671

Kurzzeichen CuZn39Pb3 p		Anhängezahl ¹)	Wanddicke	Zugfestigkeit R _m	0,2%-Dehngrenze R _{p0,2}	Bruchdehnung As	Brinellhärte HB
			mm	N/mm²	N/mm²	%	% ca.
		.08	nach	min.			
	zh	.20	Vereinbarung	ohne vorgeschrie	bene Festigkeitswerte		
	F36	.10	bis 10	≥360	≦250	30	95
	F43	.26	bis 10	≥430	≥250	15	125
	F50	.30	bis 5	≥500	≥370	10	145

i) .08 - (strang-)gepreßt; .10 - weich, ohne Korngrößenangabe; .20 - gewalzt/gezogen; .26 - halbhart; .30 - hart (DIN 17 007).

3.1.3 Stangen nach DIN 17 672

Kurzzeichen	1	Anhängezahl!)	Maße in mm			Zugfestigkeit	0,2%-Dehn-	Bruchdehnung	Brinellhärte
			Rund	Vier-, Sechs- und Vielkant	Flach	R _m	grenze R _{p 0,2}	A ₅	НВ
			Durchmesser	Schlüsselweite	Dicke	N/mm²	N/mm²	% min.	ca.
CuZn39Pb3 p		.08	nach Vereinbar	una		ahna yaraasah	riebene Festigkei	towarta	
	zh	.20	- nach veremban	ung		onne vorgesch	nebene restigke	iswerte	
	F36	.10	≥10	≥ 8	≥6	≥360	≤250	32	90
	F43	.26	≤40	≦35	≤6	≥430	≥250	15	125
	F50	.30	≤14	≦10	≤4	≥500	≥390	11	145

¹⁾ s. hierzu 3.1.2.

Deutsches Kupfer-Institut DKI

Auskunfts- und Beratungsstelle für die Verwendung von Kupfer und Kupferlegierungen Knesebeckstraße 96, 1000 Berlin 12 Telefon: (030) 31 02 71

Fernschreiber: 18 46 43

3.1.4 Drähte nach DIN 17 677

Kurzzeichen	Anhäng zahli)	Anhänge-	Durchmesser ²) in mm									
		zahl')	> 8 bis 12		> 3 bis 8		>1,5 bis 3,0		0,5 bis 1,5			
				Zugfestig- keit R _m N/mm ²	min. Bruch- dehnung A ₁₀	Zugfestig- keit R _m N/mm ²	min. Bruch- dehnung A ₁₀	Zugfestig- keit R _m N/mm ²	min. Bruch- dehnung A _L =100 %	Zugfestig- keit R _m N/mm ²	min. Bruch- dehnung A _L =100	
CuZn39Pb3	zh	.20	ohne vorges	chriebene Festi	gkeitswerte							
	F43	.26	≥430	17	≥430	16	-	-	-	4		
	F50	.30	-	-	≥500	8	≥500	5	≥500	-		

¹⁾ s. hierzu 3.1.2.

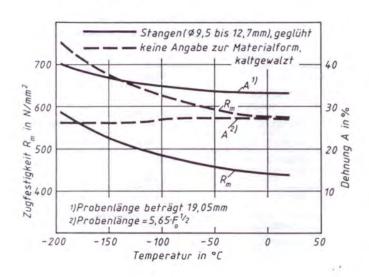
3.1.5 Strangpreßprofile nach DIN 17 674

Kurzzeichen		Anhän- gezahl ¹)	Zugfestig- keit²) R _m N/mm²	0,2 %-Dehn- grenze²) R _{p 0,2} N/mm²	Bruch- dehnung²) A ₅ %	Brinell- härte HB 2,5/62,5	
					min.	ca.	
CuZn39Pb3	p	.08	ahna yara	eschriebene	Eastiakaita	uarta	
	zh	.20	onne vorge	eschnebene	restigkeits	werte	
	F36	.10	≥360	≤250	30	100	
	F43	.26	≥430	≥250	15	130	

¹⁾ s. hierzu 3.1.2.

3.1.6 Schmiedestücke

(nur Gesenkschmiedestücke nach DIN 17 673 genormt)


Kurzzeichen	Anhän- gezahl ¹)	keit		dehnung	Brinellhärte
		R _m N/mm ²	R _{p 0,2} N/mm ²	A ₅ %	HB 2,5/62,5
CuZn39Pb3 F36	.08	≥360 ²)	≥130 ²)	≥20 ²)	80

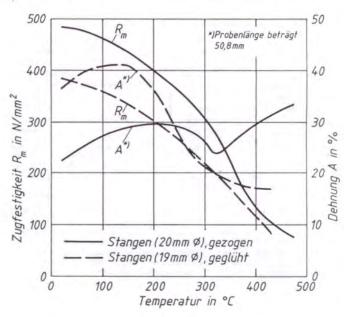
¹⁾ s. hierzu 3.1.2.

3.2 Tieftemperaturverhalten

3.2.1 Festigkeitseigenschaften

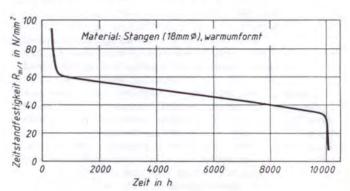
Die Zugfestigkeit sowie die Dehnung sind in dem nachstehenden Diagramm eingetragen [1, 2].

3.2.2 Kerbschlagzähigkeit


Hierzu sind nachstehende Angaben (Richtwerte) verfügbar [3].

Temperatur °C	Kerbschlagzähigkeit in Nm/cm²
- 196	26
- 100	23
20	20

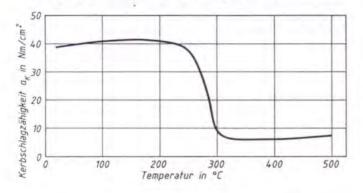
3.3 Hochtemperaturverhalten


3.3.1 Warmfestigkeit

Werte für die Zugfestigkeit sowie die Dehnung von Stangenmaterial [4] sind im nachstehenden Diagramm angegeben.

3.3.2 Zeitstandwerte

für eine Versuchstemperatur von 204°C [4].


²⁾ Die Angaben gelten gleichzeitig für Vierkant- und Sechskantdrähte sowie Profil- und Flachdrähte gleichen Querschnitts mit einfachen geometrischen Formen. Die Bruchdehnung von Profildrähten kann niedriger als die angegebenen Mindestwerte sein, daher ist der Mindestwert bei Bestellung zu vereinbaren.

Die Angaben gelten in Preß- bzw. Ziehrichtung; Werte in anderen Richtungen liegen niedriger und sind daher bei Bestellung zu vereinbaren.

²⁾ Diese Mindestwerte gelten nur in Richtung des Faserverlaufes.

3.3.3 Kerbschlagzähigkeit

aufgetragen in Abhängigkeit von der Temperatur [2].

3.4 Dauerfestigkeit

Hierzu sind folgende Angaben vorhanden [4].

Form	Dauerfestigkeit in N/mm ²	Zahl d. Lastwechsel
Stangen, ohne Angabe		
zur Materialbehandlung	135-160	5 · 107

4. Maßnormen

(soweit in der entsprechenden Halbzeugnorm nicht vorhanden).

Rohre

DIN 1755 Rohre aus Kupfer-Knetlegierungen, nahtlosgezogen

Stangen	
DIN 1756	Rundstangen aus Kupfer und Kupfer-Knetlegierungen, gezogen
DIN 1759	Rechteckstangen aus Kupfer und Kupfer-Knetlegie- rungen, gezogen, mit scharfen Kanten
DIN 1761	Vierkantstangen aus Kupfer und Kupfer-Knetlegie- rungen, gezogen mit scharfen Kanten
DIN 1763	Sechskantstangen aus Kupfer und Kupfer-Knetlegie- rungen, gezogen, mit scharfen Kanten
DIN 1782	Rundstangen aus Kupfer und Kupfer-Knetlegierungen, gepreßt

Drähte

DIN 1757 Drähte aus Kupfer und Kupfer-Knetlegierungen, ge-

Vergleich der Werkstoffbezeichnungen in verschiedenen Ländern (einschl ISO)*)

Land	Bezeichnung der Normung	Werkstoffbezeichnung und/oder -Nummer
Deutschland	DIN	CuZn39Pb3 2.0401
Frankreich	NF	CuZn40Pb3
Großbritannien	BS	CZ 121-Pb3
Italien	UNI	P-CuZn40Pb2
Japan	JIS	C 3603
Schweden	SIS	CuZn39Pb3 5170
Schweiz	VSM	CuZn39Pb3
Spanien	UNE	CuZn39Pb3 C 6440
USA	UNS	C 38500
Internat. Normung	ISO	CuZn39Pb3

^{*)} Die Toleranzbereiche der Zusammensetzung der in anderen Ländern genormten Legierungen sind nicht in allen Fällen gleich mit den Festlegungen nach DIN.

6. Bearbeitbarkeit

CuZn39Pb3 weist aufgrund der nicht einheitlichen Gefügeausbildung ($\alpha+\beta$ -Messing enthält **Blei** als Spanbrecher) eine sehr gute Spanbarkeit auf und ist daher die Hauptlegierung für die spanende Bearbeitung aller Art. Sie ist gut warmumformbar, gut stanzbar und im weichen Zustand für leichte Kaltumformungen geeignet.

Weichglühung TempBereich	450 bis 600 °C	
Entspannungsglühung TempBereich	250 bis 350 ℃	
Kaltumformung	begrenzt	
Kaltumformgrad zwischen Glühungen	max. 20%	
Warmumformung (z.B. Warmpressen) TempBereich	gut 625 bis 725°C	
Spanbarkeit ⁱ)	Bei der groben Unterteilung der Kupferwerkstoffe hinsichtlich ihrer Spanbarkeit in drei Hauptgruppen wird CuZn39Pb3 der Gruppe I (sehr gut spanbar) zugeordnet. Für eine weitere Abstufung innerhalb dieser Gruppe ist der Festigkeitszustand maßgebend, so hat CuZn39Pb3 im Zustand F50 eine relativ bessere Spanbarkeit als im Zustand F36. Die Spanform ist sehr günstig, estreten kurzbrechende Nadelspäne auf [5].	
Verbindungstechniken ¹) ²) Weichlöten sehr gut Hartlöten mittel Gasschweißen weniger empfehlenswer Lichtbogenhandschweißen weniger empfehlenswer WIG-Schweißen weniger empfehlenswer MIG-Schweißen weniger empfehlenswer Widerstandsschweißen mittel Kleben geeignet		
Mechanisches Polieren	sehr gut	
Elektrolytisches/ chemisches Polieren	weniger empfehlenswert	
Galvanisierbarkeit	sehr gut	
Eignung für Tauchverzinnung	sehr gut	

1) Spezielle Informationsschriften sind beim DKI erhältlich.

2) Wenn das Schweißen von Kupfer-Zink-Legierungen nicht fachmännisch durchführt wird, kann eine hohe Zinkausdampfung auftreten. Das Schweißen von CuZn39Pb3 bereitet aufgrund des Bleigehaltes zusätzliche Schwierigkeiten, wegen der auftretenden Schrumpfspannungen wird die Schmelzschweißeignung ungünstig beeinflußt.

7. Korrosionsbeständigkeit

CuZn39Pb3 erreicht gegenüber Wasser, verschiedenen Salzlösungen und organischen Flüssigkeiten nicht die hohe Beständigkeit eines homogenen $\alpha\textsc{-Messings}$, da die zinkreiche $\beta\textsc{-Phase}$ im heterogenen Gefüge bevorzugt angegriffen wird.

Außerdem kann unter bestimmten Bedingungen (Wässer mit hohem Cl-Gehalt und niedriger Karbonathärte) eine Korrosion in Form der "Entzinkung" auftreten.

Ferner neigt dieser Werkstoff im kaltverformten Zustand unter äußeren und/oder inneren Zugspannungen bei gleichzeitiger Einwirkung gewisser Angriffsmittel (Ammoniak, Amine, Ammoniumsalze) zur "Spannungsrißkorrosion". Durch eine Wärmebehandlung (Entspannungsglühen) läßt sich eine Spannungsrißkorrosion vermeiden. Dabei ist jedoch zu beachten, daß nachträglich durch Einbau bzw. Weiterverarbeitung wieder Zugspannungen in den spannungsfreigeglühten Werkstoff eingebracht werden können.

8 Anwendungsbeispiele

Armaturen, Formdrehteile aller Art, Bauprofile, Kugellagerkäfige, Zirkelteile (Reißzeugteile), Schließzylinder, Steckerstifte, Gewindestangen, Ventilkörper, Schrauben, Muttern, Wasserhahngriffe, Uhrenteile, Kabelklemmen, Kugelschreiberspitzen, Lüsterklemmen, Gesenkschmiedestücke, Platinen, Steigräder, Teile für Elektrotechnik und allgemeinen Maschinenbau.

9. Liefernachweis

Nachweise von Herstellern und Händlern für Halbzeug aus CuZn39Pb3 können beim DKI angefordert werden.

10. Literatur

- [1] Baron, H. G., Stress/Strain Curves of Some Metals and Alloys at Low Temperatures and High Rates of Strain. J. Iron and Steel Inst. Vol. 182 (1956), S. 354–365.
- [2] Kupfer-Zink-Legierungen. Deutsches Kupfer-Institut (1966).
- [3] Werkstoff-Kartei Koloc, Kupferlegierungen, Fachbuchverlag GmbH, Leipzig.
- [4] Copper Data Sheet No. E8, CuZn40Pb3, Deutsches Kupfer-Institut (1970).
- [5] Richtwerte für die spanende Bearbeitung von Kupfer und Kupferlegierungen (DKI-Informationsdruck i.18). Deutsches Kupfer-Institut, Berlin (1983).